
Sven Pfennig & Christoph Voigt
Liquid Reply GmbH

DAPR and Wasm; a Symbiosis for
Polyglot Application Development

Agenda

● Meet dapr
● Meet Wasm
● Better together
● Blueprints for your use case

Who is talking?

Sven Pfennig

Principal Consultant Software Engineering
at Liquid Reply

Working on cloud native application
development for hybrid- and multi-cloud
environments.

Tech lead WG-Wasm (TAG Runtime)

#wg-wasm @ CNCF Slack

@0xe282b0

@0xe282b0@hachyderm.io

@vogti

@cv@hachyderm.io

Who is talking?

Christoph Voigt

Co-Founder and developer of Liquid Reply

Software Engineering background, having a
focus on Cloud Native Infrastructure- and
Application-Architectures

#wg-wasm @ CNCF Slack

Application

img lib

logic

db lib

Server
Incoming Traffic

Outgoing Traffic

What if…

I want to change my database?

I need additional authentication?

I want to write a similar app?

count: 2

100101011

Introducing Dapr

Application

lib

logic

Server
Incoming Traffic

Outgoing Traffic

Benefits

✅ I can change my database

✅ Dapr can handle auth for me

❓ I want to write a similar app?��

Adding Dapr to the Equation

What is WebAssembly

Is a compilation target & low-level binary instruction format

Portable ➡ makes no architectural assumptions

Safe ➡ code is validated and executes in a memory-safe,
sandboxed environment

Fast ➡ executes with near native code performance

Language
independent ➡

does not privilege any particular language,
programming model, or object model

How does WebAssembly work conceptually?

Application

Sandbox

Compile code
to

WebAssembly

Load wasm
in

Application

*.wasm

int add_one(int x) {
 return x+1;
}

○ Avoid Boilerplate, make code reusable
○ Low Overhead
○ Separation of Concerns
○ Improve Security
○ Freedom of Choice (Language & Tooling)
○ BUT the way how they implement it are on

different layers

Dapr & Wasm have common Goals

Why would you want to run Wasm & Dapr together?

❤
● Interfaces to connect to 150+ cloud services including

databases, message brokers, etc.

● Observability

● Authentication (OAuth2, OIDC)

● Rate limiting and concurrency control

● Identity and access control

● …

● We want to run WebAssembly because
○ Runtime Security
○ Tiny Footprint
○ Free choice of language
○ Platform independence

Application

lib

logic

Server
Incoming Traffic

Outgoing Traffic

Benefits

✅ I can change my database

✅ Dapr can handle auth for me

✅ I want to write a similar app?

Adding Wasm to the Equation

How to connect WebAssembly & Dapr?

Heterogeneous use cases

● Architecture: FaaS, Microservice, Event driven
● Runtimes: WasmTime, WasmEdge, Wazero, Wasmer and more…
● Languages: Rust, Go, JavaScript, Python, Zig, …
● Invocation rates: Most important for the type of integration

Lot of choices available

● Dapr/Wasm Integration on Kubernetes; a lot of parameters:
○ Sidecar / Daemonset
○ HTTP/GRPC
○ Standalone Runtime/ Embedded SDK
○ Vertical / Horizontal Pod Autoscaler
○ …

Considerations:

● What use case should you consider this
blueprint for

A Blueprint

Prerequisites:

● What do you need to apply the blueprint

Variations:

● How to apply and adapt the blueprint

Limitations:

● When to not use this blueprint

Considerations:

● Wazero is already included
● Hosting pure functions

○ Transformation
○ Validation

● Low/Medium invocation rates

Wazero HTTP Middleware

Prerequisites:

● Dapr deployment
● Function compiled to Wasm
● A way to provision the wasm module

Variations:

1. Wasm in container at buildtime
2. Mount a volume
3. Download during startup

Alternative:

● Customize dapr behavior without recompiling

Limitations:

● No side effects in function

Considerations:

● Microservices are a common architectural
pattern

● Almost all Wasm runtimes have HTTP support
● Dapr provides state management support
● Bindings and pub/sub can be used as triggers
● High invocation rates, scalable deployments

Microservice on Standalone Wasm Runtime

Prerequisites:

● Dapr deployment
● Wasm runtime
● Support for HTTP client/servrer

Variations:

1. Access to state management, output bindings,
service invocation, …

Limitations:

● Non HTTP connections

Variations:

1. Access to state management, output bindings,
service invocation, …

2. Get triggered by
Input bindings or
pub/sub.

Considerations:

● HTTP calls have quite some overhead
● Some use cases like event streaming need

really high throughput.
● GRPC implementations are not common in the

Wasm ecosystems
● Wasm is a great plugin system
● Host function calls that map to GRPC increase

the throughput dramatically

Embedded Wasm Runtime

Prerequisites:

● Runtime with SDK (almost all)
● Supported host language
● Some development effort

Variations:

1. Rust host language, pass trough calls to dapr
2. Reduce talks with local state and caching

Limitations:

● Additional development effort

Summary

● Does Dapr + Wasm live up to its promises?
○ You can start with almost no boilerplate code and increase complexity if needed
○ Observability which is actually hard to implement in Wasm applications
○ Flexible variants can be adapted to the actual use case

● Good for…
○ Cloud native architectures

● Not good for…
○ highly specialized protocols e.g. UDP based
○ Systems programming

Where to go from here

More on Dapr & WebAssembly

● Rust an WebAssembly (Michael Young, Secondstate)
○ https://www.manning.com/liveprojectseries/rust-an

d-webassembly-ser
● wasm-dapr template project

○ https://github.com/second-state/dapr-wasm
● Dapr with WebAssembly Course

○ stay tuned… (and follow our socials)

More on WebAssembly & Kubernetes

● Course on WebAssembly from Kubesimplify (Saiyam
Pathak & Rishit Dagli)

○ https://www.youtube.com/watch?v=eYekV2Do0YU
○ or search for “Kubesimplify Wasm” on YouTube

● Spinkube
○ https://www.spinkube.dev/

Feedback
welcome:

@vogti

@cv@hachyderm.io

@0xe282b0

@0xe282b0@hachyderm.io

@LiquidReply

https://github.com/second-state/dapr-wasm

