
Think container
orchestration different
– WASM is coming
Christoph Voigt & Max Körbächer | Co-Founder of Liquid Reply

Max Körbächer
Co-Founder and Kubernetes Platform
Engineer at Liquid Reply
Former Enterprise Architect, focusing on
Kubernetes and Cloud Native
Infrastructure.
Contributing to the Kubernetes release
team and related K8s technologies
Servant for a 🐈

Christoph Voigt
Co-Founder and developer of Liquid Reply

Software Engineering background, having
a focus on Cloud Native Infrastructure-
and Application-Architectures

Contributing to the Kubernetes release
team and related K8s technologies

Father of two

Who are we?

We help our clients entangling difficulties
of modern IT-Infrastructure, developing,
architecting and teaching cloud-native
technologies.

Liquid Reply is the
Kubernetes and Cloud-Native
consultancy of the Reply Network.

Todays Journey

Conclusion and look into
the glass bowl 🔮

What is WASM and
how is it even relevant? 🧐

What is the status quo of the
WASM ecosystem?

WebAssembly (WASM) is at an inflection point:
Over the next few years, we expect to see increased
adoption of WebAssembly across the tech sphere, from
containerization to plugin systems to serverless
computing platforms

WebAssembly
Intro

src: https://twitter.com/solomonstre/status/1111004913222324225

Think of it as an intermediate layer between various programming
languages and many different execution environments. You can
take code written in over 30 different languages and compile it into a
*.wasm file, and then can execute that file on any WASM Runtime.

The name “WebAssembly” is misleading. Initially designed to make
code run fast on the web, today it can run anywhere.

WebAssembly is:
● stack-based VM executing binary file formats
● CPU-agnostic -> taking any architecture
● OS-agnostic
● Entirely depends on the host runtime (we will talk later about it)

What is WebAssembly?

WebAssembly oversimplified:

⚡ Consistently fast

🔬 Small

🌍 Universal

♻ Reusable

Benefits of WebAssembly

Slightly adjusted; Source: https://b-nova.com/home/content/containerless-mit-webassembly-runtimes*

Fast

https://b-nova.com/home/content/containerless-mit-webassembly-runtimes

Where can WebAssembly be
applied?

*outside the Browser

🪢
Language

Interoperability

🧩
Plugin Systems

🖼
Embedded

Sandboxing

📦
Containerisation

🧮
Serverless
Platforms

🔗
Blockchains

Never trust third
parties!

Envoy / Istio
Kubewarden

MS Flight Simulator
Minecraft

RedPanda

Write that library
once in a language
of your choice; use
in any language.

Figma
Lichess.org
Google Earth

Adobe Photoshop

Prevent yourself
against bugs of

third party libraries.

Firefox
HTTP Servers

Universal Runtime,
capability based
security model.

Krustlet
Hippo

wasmCloud
Lunatic

WasmEdge

Minimal Startup time,
maximal isolation.

Cloudflare Workers
AWS Lambda

Atmo (Suborbital)
Fastly Compute@Edge

Write Smart
Contracts in a

language of your
choice.

CosmWasm
eWASM

A new paradigm ahead?

Image Source (adjusted): Liam Randall (@Hectaman) - https://twitter.com/Hectaman/status/1389585069073895434

https://twitter.com/Hectaman
https://twitter.com/Hectaman/status/1389585069073895434

A new paradigm ahead?

Image Source (adjusted): Liam Randall (@Hectaman) - https://twitter.com/Hectaman/status/1389585069073895434

https://twitter.com/Hectaman
https://twitter.com/Hectaman/status/1389585069073895434

Some WASM
implementations

(a subjective choice)

Krustlet

- Kubernetes Cluster technology could be a good fit to orchestrate
WASM modules similar to containers

- The advantages of WASM modules in a cluster compared to a
Container?

- security sandboxed by default
- reduce upstart time
- decreases footprint
- hardware (host) independent (hi arm/x86 containers!)

- instead of containers, we want to start wasm runtimes

What problem does it aim to solve?

Node

Kubelet

CRI Runtime

Docker CRI-O container-d …

OCI Runtime

crun runc gVisor …

Linux Container
Images

Kubernetes

Kubernetes API Server

A Regular Kubernetes Stack

Krustlet

- Krustlet acts as a Kubelet by listening on the event stream for
new pods that the scheduler assigns to it based on specific
Kubernetes tolerations.

- The default implementation of Krustlet listens for the architecture
wasm32-wasi and schedules those workloads to run in a
wasmtime-based runtime instead of a container runtime.

Solution Approach

Kubernetes

Kubernetes API Server

Node

Krustlet

Wasmtime

wasi

WASM Module

A Krustlet Kubernetes Stack

Krustlet

- Krustlet acts as a Kubelet by listening on the event stream for
new pods that the scheduler assigns to it based on specific
Kubernetes tolerations.

- The default implementation of Krustlet listens for the architecture
wasm32-wasi and schedules those workloads to run in a
wasmtime-based runtime instead of a container runtime.

Solution Approach

Advantages
➕ add “wasm nodes” to your cluster without

changing the entire cluster setup
➕ use the same Pod-Spec as for your normal

Pods
➕ CSI support
➕ Plugin-Support

Considerations
➖ either Kubelet OR Krustlet
➖ as there is no container runtime, you need

toleration configs to avoid scheduling of
“normal” cluster-wide daemonset* (e.g. CNI)

➖ your modules are only allowed to do what the
runtime permits → no Network for your
modules!

➖ wasi + wasmtime under heavy development
→ so is Krustlet

Krustlet
Solution Approach

* There is a Container Runtime Interface provider implementation for
Krustlet. This runtime allows you to run the containers you know and
love within Krustlet.

Try it in Kind:
https://github.com/Liquid-Reply/kind/tree/kind-krustlet

https://github.com/Liquid-Reply/kind/tree/kind-krustlet

WasmEdge

● Aims to solve similar problems as Krustlet, but in a more flexible
and leaner way

● Especially targets the integration in various Kubernetes
distributions, CRI runtimes as well as OCI runtimes - therefore a
good match to run WASM side by side with classic containers

● Runs also stand alone for modern web apps, to host serverless
functions and being “embedded” in any kind of edge device.

Integrating with existing tooling, and more …

Node

Kubelet

CRI Runtime

Docker CRI-O container-d …

OCI Runtime

crun runc gVisor …

Linux
Container
Images

Kubernetes

Kubernetes API Server

The Container Eco-System

WebAssembly
app images

based on: https://wasmedge.org/book/en/kubernetes.html

https://wasmedge.org/book/en/kubernetes.html

WasmEdge

WasmEdge is different on the image level. Rather than having a container image with a OS, the
WASM image is build from scratch. In addition, the container requires an “wasm.image”
annotation, to let crun and containerd know that it use WasmEdge.

This approach allows to use WASM within the Kubernetes context, and utilize the existing
ecosystem.

Solution Approach

*http server wasm image within a docker file

*a wasm container requires the wasm image annotation

WasmEdge

Considerations
➖ Additional tools for image annotation are required

(at the moment)
➖ For some use cases you need another SDK
➖ It can lead to confusion that you can use

WasmEdge in very different scenarios and each of
them has to be developed differently

Solution Approach

Advantages
➕ WasmEdge can run alongside your standard

containers
➕ Build and deployment spec are nearly the

same as for a normal pod
➕ Supports different CRI, OCI and K8s distros
➕ Can use existing K8s ecosystem
➕ Runs by itself on edge, serverless or browser

From all tools we show today, WasmEdge would be the
best choice to extend your currently orchestration without

deep cutting changes

- wasmCloud is a distributed platform for writing portable business logic that can run anywhere
from the edge to the cloud. Secure by default, wasmCloud aims to strip wasteful boilerplate
from the developer experience.

- Business-Applications contain a lot of boilerplate:
- Webserver
- integrated dependencies (Database, Caches)
- tight coupling to non-functional requirements
- Security (certificates etc.)
- …

- Only a fraction is actual business logic

WasmCloud
What problem does it aim to solve?

WasmCloud
The Solution

wasmCloud Host Runtime

Actor

Actor
Actor

🤝
Capability Provider

wasmCloud Host Runtime

🕸
Lattice

…

 Self-Forming
= Self-Healing
 Flat Topology

Actor

Actor
Actor

🤝
Capability
Provider Three core concepts:

- Actor
- Capability Provider
- Lattice

WasmCloud
Reach and Resilience backed by the Lattice

☁

📱

☁
Cloud A

Cloud B

Data
Center Lattice

🏢

WasmCloud
Reach and Resilience backed by the Lattice

☁

📱

☁
Cloud A

Cloud B

Data
Center ⚡
🏢

Lattice

WasmCloud
Reach and Resilience backed by the Lattice

☁

📱

☁

🏢

Cloud A

Cloud B

Data
Center ⚡Lattice

Considerations
➖ applications need to be written with

WasmCloud in mind
➖ currently Rust is the only supported

language; though other languages are
planned

➖ still very young project - expect rough edges
➖ tooling for debugging and monitoring

rudimentary

Advantages
➕ high focus on writing business logic
➕ potentially high reusability of WASM modules
➕ high isolation
➕ high amount of security
➕ high resiliency
➕ HostRuntimes can run “anywhere” (Bare

metal, VM, Container, Kubernetes,
Webbrowser…)

WasmCloud
Solution Approach

Summary

WASM Ecosystem

● The WASM ecosystem is
under heavy development

● Many tools are new or
getting continuously
reshaped

● This is reflected in the
CNCF WASM landscape

A missing extension?

Docker-like
container

WebAssembly

Performance OK Great

Resource
footprint

Poor Great

Isolation OK Great

Safety OK Great

Portability OK Great

Security OK Great

Language and
framework
choice

Great OK (yet)

Ease of use Great OK (yet)
Manageability Great Great

Go with the Container flow

Containers will stay and drastically
increase in usage over the next years.

Build with WASM for the future

But for future developments WASM might
be in many cases a better choice.

Containers for lifting,
WASM for re-creating

We believe that WASM & Container will go along side
by side

1

2

3

4

5

Conclusion

WebAssembly’s potential is
beyond the browser

WASM enables use cases
that are not possible with

container & K8s

WASM will not substitute
containers & K8s, but extend

them

WASM lacks harmonization
and makes it difficult for

programming languages to
adapt

The developer experience
of/for WASM will be the

game changer

WASM will be
ubiquitous

- https://www.infoworld.com/article/3651503/the-rise-of-webassembly.html
- https://harshal.sheth.io/2022/01/31/webassembly.html ***
- https://nickymeuleman.netlify.app/blog/webassembly ***
- https://docs.krustlet.dev/topics/architecture/
- https://docs.krustlet.dev/topics/providers/
- https://github.com/Liquid-Reply/kind/tree/kind-krustlet (Krustlet baked into Kind:)
- https://bytecodealliance.org/articles/announcing-the-bytecode-alliance ***
- https://thenewstack.io/what-is-webassembly/
- https://www.youtube.com/watch?v=vqBtoPJoQOE
- https://istio.io/latest/docs/concepts/wasm/
- https://www.kubewarden.io/
- https://docs.flightsimulator.com/html/Programming_Tools/WASM/WebAssembly.htm
- https://hacks.mozilla.org/2021/12/webassembly-and-back-again-fine-grained-sandboxing-in-firefox-95/
- https://almanac.httparchive.org/en/2021/webassembly
- https://harshal.sheth.io/2022/01/31/webassembly.html
- https://github.com/deislabs/hippo
- https://github.com/lunatic-solutions/lunatic
- https://github.com/suborbital/atmo
- https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
- https://www.fastly.com/blog/how-compute-edge-is-tackling-the-most-frustrating-aspects-of-serverless
- https://cosmwasm.com/
- https://github.com/ewasm/design
- https://wasmcloud.dev/reference/host-runtime/

Sources

https://www.infoworld.com/article/3651503/the-rise-of-webassembly.html
https://harshal.sheth.io/2022/01/31/webassembly.html
https://nickymeuleman.netlify.app/blog/webassembly
https://bytecodealliance.org/articles/announcing-the-bytecode-alliance
https://thenewstack.io/what-is-webassembly/
https://www.youtube.com/watch?v=vqBtoPJoQOE

Thank you!

